Function Sequence Genetic Programming

نویسندگان

  • Shixian Wang
  • Yuehui Chen
  • Peng Wu
چکیده

Genetic Programming(GP) can obtain a program structure to solve complex problem. This paper presents a new form of Genetic Programming, Function Sequence Genetic Programming (FSGP). We adopt function set like Genetic Programming, and define data set corresponding to its terminal set. Besides of input data and constants, data set include medium variables which are used not only as arguments of functions, but also as temporary variables to store function return value. The program individual is given as a function sequence instead of tree and graph. All functions run orderly. The result of executed program is the return value of the last function in the function sequences. This presentation is closer to real handwriting program. Moreover it has an advantage that the genetic operations are easy implemented since the function sequence is linear. We apply FSGP to factorial problem and stock index prediction. The initial simulation results indicate that the FSGP is more powerful than the conventional genetic programming both in implementation time and solution accuracy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New scheduling rules for a dynamic flexible flow line problem with sequence-dependent setup times

In the literature, the application of multi-objective dynamic scheduling problem and simple priority rules are widely studied. Although these rules are not efficient enough due to simplicity and lack of general insight, composite dispatching rules have a very suitable performance because they result from experiments. In this paper, a dynamic flexible flow line problem with sequence-dependent se...

متن کامل

Pareto-based Multi-criteria Evolutionary Algorithm for Parallel Machines Scheduling Problem with Sequence-dependent Setup Times

This paper addresses an unrelated multi-machine scheduling problem with sequence-dependent setup time, release date and processing set restriction to minimize the sum of weighted earliness/tardiness penalties and the sum of completion times, which is known to be NP-hard. A Mixed Integer Programming (MIP) model is proposed to formulate the considered multi-criteria problem. Also, to solve the mo...

متن کامل

Dimensionality Reduction and Improving the Performance of Automatic Modulation Classification using Genetic Programming (RESEARCH NOTE)

This paper shows how we can make advantage of using genetic programming in selection of suitable features for automatic modulation recognition. Automatic modulation recognition is one of the essential components of modern receivers. In this regard, selection of suitable features may significantly affect the performance of the process. Simulations were conducted with 5db and 10db SNRs. Test and ...

متن کامل

An Efficient Bi-objective Genetic Algorithm for the Single Batch-Processing Machine Scheduling Problem with Sequence Dependent Family Setup Time and Non-identical Job Sizes

This paper considers the problem of minimizing make-span and maximum tardiness simultaneously for scheduling jobs under non-identical job sizes, dynamic job arrivals, incompatible job families,and sequence-dependentfamily setup time on the single batch- processor, where split size of jobs is allowed between batches. At first, a new Mixed Integer Linear Programming (MILP) model is proposed for t...

متن کامل

A Fast and Self-Repairing Genetic Programming Designer for Logic Circuits

Usually, important parameters in the design and implementation of combinational logic circuits are the number of gates, transistors, and the levels used in the design of the circuit. In this regard, various evolutionary paradigms with different competency have recently been introduced. However, while being advantageous, evolutionary paradigms also have some limitations including: a) lack of con...

متن کامل

A Mathematical Modeling for Plastic Analysis of Planar Frames by Linear Programming and Genetic Algorithm

In this paper, a mathematical modeling is developed for plastic analysis of planar frames. To this end, the researcher tried to design an optimization model in linear format in order to solve large scale samples. The computational result of CPU time requirement is shown for different samples to prove efficiency of this method for large scale models. The fundamental concept of this model is ob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009